Lu Qiuying

By:/ From: Shanghai Lixin University of Accounting and Finance/ Date:0120,2021/ View:10Set up the

LuQiuying


TitleProfessor

School ofStatistics and Mathematics

ShanghaiLixinUniversityof Accounting andFinance,

No. 995 Shangchuan Rd, Shanghai.

Tel: (86-21)

Email:luqy@lixin.edu.cn

AREAS OF INTEREST

Teaching:Ordinary Differential Equation

Research:Ordinary Differential Equation and Dynamics System

EDUCATION BACKGROUND

09/2006-06/2009 East China Normal University, Ph.D. of Mathematics

07/2006-12/2018Université Lille 1, Ph.D. of Mathematics

09/2003-06/2006 East China Normal University, Masters Degree of Mathematics

09/1999.9-06/2003 Qufu Normal University, Bachelors Degree of Mathematics

EXPERIENCE

Full Time

11 years

Courses Taught

Ordinary Differential Equations,Calculus, Linear Algebra, Probability and Statistics

PUBLICATIONS

1. V. Naudot,J.D. Mireles James, Q. Lu,High-order parameterization of (un)stable manifolds for hybrid maps:Implementation and applications,Communications in Nonlinear Science and Numerical Simulation, 53(2017),184-201.

2. Q. Lu, V. Naudot,Bifurcation complexity fromorbit-flip homoclinic orbit of weak type, International Journal of Bifurcation and Chaos, 26: 4(2016), 1650059,1-16.

3. Q. Lu, G. Deng, H. Luo,Codimension 3 bifurcation from orbit-flip homoclinic orbit of weak type, Electronic Journal of Qualitative Theory of Differential Equations, 71(2015),1-12.

4. Q. Lu, G. Deng, W. Zhang,Randomattractors forstochastic Ginzburg-Landauequation onunboundeddomains,Abstract and Applied Analysis,2014.

5. T. Zhou, W. Zhang, Q. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Applied Mathematics and Computation, 226 (2014), 288–305.

6. G. Deng, Q. Lu, N. Liu,A general method for studying quadraticperturbations of thethird-orderlynessdifferenceequation, Advances in Difference Equations, 193(2013), 1-9.

7. Z. Qiao, D. Zhu,Q. Lu, Bifurcationofaheterodimensionalcyclewithweakinclinationflip,Discreteand Continuous Dynamical Systems Series B, 17:3 (2012),1009-1025.

8. Q. Lu, D. Zhu,F.Geng, Weak typeheterodimensional cycle bifurcation with orbit-flip,Science China Mathematics,54:6(2011),1175-1196.

9. Q. Lu, W. Zhang, Positive solutions for the nth-order delay differential system with multi-parameter,Applied Mechanics and Materials, 50-51, (2011), 185-189.

10. Q. Lu, Z. Qiao, T. Zhang, D. Zhu,Heterodimensional cycle bifurcation with orbit-flip, International Journal of Bifurcation and Chaos, 20:2 (2010), 491-508.

11. Q. Lu,Stability of SIRS system with random perturbations, Physica A, 388:18(2009), 3677-3686.

12. Q. Lu, Codimension 2 bifurcation of twisted double homoclinic loops, Computers&Mathematics with Applications, 57:7 (2009), 1127-1141.

13. Q. Lu,Non-resonance 3D homoclinic bifurcation with inclination-flip, Chaos, Soliton & Fractals, 42:5(2009), 2597-2605.

14. Z. Qiao, Q. Lu, D. Zhu,Bifurcation ofroughheteroclinicloop withorbit andinclinationflips,Nonlinear Analysis: Real World Applications, 10 (2009), 611-628.


返回 原图
/

Baidu
map