LuQiuying
Title:Professor
School ofStatistics and Mathematics
ShanghaiLixinUniversityof Accounting andFinance,
No. 995 Shangchuan Rd, Shanghai.
Tel: (86-21)
Email:luqy@lixin.edu.cn
AREAS OF INTEREST
Teaching:Ordinary Differential Equation
Research:Ordinary Differential Equation and Dynamics System
EDUCATION BACKGROUND
09/2006-06/2009 East China Normal University, Ph.D. of Mathematics
07/2006-12/2018Université Lille 1, Ph.D. of Mathematics
09/2003-06/2006 East China Normal University, Master’s Degree of Mathematics
09/1999.9-06/2003 Qufu Normal University, Bachelor’s Degree of Mathematics
EXPERIENCE
Full Time:
11 years
Courses Taught:
Ordinary Differential Equations,Calculus, Linear Algebra, Probability and Statistics
PUBLICATIONS
1. V. Naudot,J.D. Mireles James, Q. Lu,High-order parameterization of (un)stable manifolds for hybrid maps:Implementation and applications,Communications in Nonlinear Science and Numerical Simulation, 53(2017),184-201.
2. Q. Lu, V. Naudot,Bifurcation complexity fromorbit-flip homoclinic orbit of weak type, International Journal of Bifurcation and Chaos, 26: 4(2016), 1650059,1-16.
3. Q. Lu, G. Deng, H. Luo,Codimension 3 bifurcation from orbit-flip homoclinic orbit of weak type, Electronic Journal of Qualitative Theory of Differential Equations, 71(2015),1-12.
4. Q. Lu, G. Deng, W. Zhang,Randomattractors forstochastic Ginzburg-Landauequation onunboundeddomains,Abstract and Applied Analysis,2014.
5. T. Zhou, W. Zhang, Q. Lu, Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function, Applied Mathematics and Computation, 226 (2014), 288–305.
6. G. Deng, Q. Lu, N. Liu,A general method for studying quadraticperturbations of thethird-orderlynessdifferenceequation, Advances in Difference Equations, 193(2013), 1-9.
7. Z. Qiao, D. Zhu,Q. Lu, Bifurcationofaheterodimensionalcyclewithweakinclinationflip,Discreteand Continuous Dynamical Systems Series B, 17:3 (2012),1009-1025.
8. Q. Lu, D. Zhu,F.Geng, Weak typeheterodimensional cycle bifurcation with orbit-flip,Science China Mathematics,54:6(2011),1175-1196.
9. Q. Lu, W. Zhang, Positive solutions for the nth-order delay differential system with multi-parameter,Applied Mechanics and Materials, 50-51, (2011), 185-189.
10. Q. Lu, Z. Qiao, T. Zhang, D. Zhu,Heterodimensional cycle bifurcation with orbit-flip, International Journal of Bifurcation and Chaos, 20:2 (2010), 491-508.
11. Q. Lu,Stability of SIRS system with random perturbations, Physica A, 388:18(2009), 3677-3686.
12. Q. Lu, Codimension 2 bifurcation of twisted double homoclinic loops, Computers&Mathematics with Applications, 57:7 (2009), 1127-1141.
13. Q. Lu,Non-resonance 3D homoclinic bifurcation with inclination-flip, Chaos, Soliton & Fractals, 42:5(2009), 2597-2605.
14. Z. Qiao, Q. Lu, D. Zhu,Bifurcation ofroughheteroclinicloop withorbit andinclinationflips,Nonlinear Analysis: Real World Applications, 10 (2009), 611-628.